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Numerical calculations of the resonant interactions of three-dimensional short-crested
waves very near their two-dimensional standing wave limit are performed for water
of uniform depth. A detailed study of the properties of the solutions indicates that
both classes of waves admit multiple solutions that are connected to each other
through turning points. It is also shown that the solutions match each other at the
limit. Then a study on the superharmonic instabilities (resonant interactions) of short-
crested waves was performed in the vicinity of the standing wave limit. The matching
allowed extrapolation of the short-crested wave stability results to standing waves.
The results are that for resonant waves, superharmonic instabilities associated with
harmonic resonance are dominant. The possible jumps from one solution to another
may lead to a drastic change of the wave itself. Since the superharmonic instability
enhances this property one may conclude that this class of waves can be considered
non-stationary. By contrast, non-resonant waves are weakly unstable or stable and
are the only waves that are likely to exist. Thus, this class of waves can be considered
as quasi-permanent.

1. Introduction
Two-dimensional standing waves may be described as confined waves that are

subject to two boundary conditions at their extremities. Mercer & Roberts (1994)
showed that the strongest (lowest order) harmonic resonance appears at the fifth
order of the solution. The linear theory associates the harmonic resonance with non-
uniqueness of the solutions. Standing waves represent one limit of three-dimensional
short-crested wave fields. These latter waves are defined as a superposition of two
two-dimensional progressive wave trains of equal wavelengths intersecting at angle
γ . A description of short-crested waves can be found in Hsu, Tsuchiya & Silvester
(1979) who defined the angle θ as θ = (π − γ )/2. Based on a variational approach,
Bridges, Dias & Menasce (2001) provided a new formulation of the problem of steady
doubly periodic patterns on finite-depth fluid including a uniform mean flow. The
standing wave limit corresponds to angle θ =0◦, i.e. two progressive waves propagate
in opposite directions. The other two-dimensional limit is the progressive Stokes wave
for θ = 90◦, i.e. the two waves propagate in the same direction.
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Roberts (1983) and Marchant & Roberts (1987) discussed the properties of short-
crested waves for deep water and water of finite depth respectively. In particular,
they showed how short-crested wave fields may be unsteady through harmonic
resonance phenomena. Later, Ioualalen, Roberts & Kharif (1996) and Ioualalen,
Kharif & Roberts (1999) showed for finite depth water that a harmonic resonance
of an asymptotic short-crested wave solution is associated with a sporadic and weak
superharmonic instability that is not likely to develop. In particular, the associated
instability exhibits a bubble-like shape in the wave steepness parameter space. Their
short-crested wave solutions were not complete however because they computed and
analysed only one branch of the solution associated with harmonic resonance. Later,
for a single (one only) harmonic resonance, Ioualalen & Okamura (2002) computed
fully nonlinear short-crested waves with their characteristic multiple solution, i.e. two
branches matching each other through a turning point plus one single branch. They
found that the solutions computed by Ioualalen et al. (1996, 1999) were incomplete
when a harmonic resonance occurs because they do not take into account the
bifurcation process between the different branches. They also computed the stability
diagram in the vicinity of a harmonic resonance and found that a single harmonic
resonance is associated with two bubbles of instability that are no longer sporadic.

Very little work has been done near the two-dimensional limits of short-crested
waves, i.e. on how short-crested wave fields match standing waves. Okamura
(1996) showed that short-crested waves match standing waves in deep water for
θ → 0◦. However the question still remains for standing waves on finite depth.
Marchant & Roberts (1987) and Mercer & Roberts (1994) showed that harmonic
resonances occur for standing waves on finite depth if a harmonic (m, n), that is,
sin(mωt) cos(ny) cosh[n(z + d)], is solution of the homogeneous differential equation
derived from the nonlinear surface conditions of the standing wave. Such a case
occurs at critical depths for which

n tanh(nd) = m2 tanh d. (1.1)

Marchant & Roberts (1987) calculated the critical depths for which a harmonic
resonance occurs. The lowest-order harmonic resonance (3, 5), is generated at depth
dhr ≈ 0.624.

In the present study, the matching between approximate short-crested waves and
standing waves is analysed near that critical depth. Note that all solutions discussed
in the paper are approximated because of the presence of the harmonic resonances.
Then a superharmonic stability analysis is performed in order to examine the time
scales of the harmonic resonances for short-crested waves very near the standing
wave limit, i.e for θ → 0◦. This is because our stability numerical procedure does not
apply directly to non-stationary standing waves.

2. General equations and numerical procedures
We consider surface gravity waves on an inviscid incompressible fluid of finite

depth where the flow is assumed irrotational. The governing equations are given
in a dimensionless form with respect to the reference length 1/k and the reference
time (gk)−1/2, where g is the gravitational acceleration and k the wavenumber of the
incident wave train.

Let us define a frame of reference (x∗, y∗, z∗, t∗, φ∗) so that x∗ = x − ct , y∗ = y,
z∗ = z, t∗ = t and φ∗ = φ − cx∗ where c represents the propagation velocity of the
short-crested wave train and is equal to ω/α, ω being the frequency of the wave and
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α = sin θ is the x-direction wavenumber, the y-direction wavenumber being β = cos θ .
If we omit the asterisks for simplicity, the governing equations are

�φ = 0 for −d < z < η, (2.1)

φz = 0 on z = −d , (2.2)

φt + η + 1
2

(
φ2

x + φ2
y + φ2

z − c2
)

= 0 on z = η, (2.3)

ηt + φxηx + φyηy − φz = 0 on z = η, (2.4)

where d is the depth of the fluid, φ(x, y, z, t) is the velocity potential and z = η(x, y, t)
is the equation of the free surface. In this new frame of reference propagating at
a speed c, the system of equations (2.1)–(2.4) admits doubly periodic solutions of
permanent form η̄(x, y) and φ̄(x, y, z).

Like Ioualalen et al. (1999), we define the following functions to construct a stability
problem:

η(x, y, t) = η̄(x, y) + η′(x, y, t), (2.5)

φ(x, y, z, t) = φ̄(x, y, z) + φ′(x, y, z, t), (2.6)

where we assume that the surface elevation and the velocity potential are the
superposition of a steady unperturbed wave (η̄, φ̄) and infinitesimal unsteady
perturbations (η′, φ′) where η′ � η̄ and φ′ � φ̄. After substituting (2.5) and (2.6)
into equations (2.1)–(2.4) and linearizing, we obtain the zeroth-order system of
equations for which permanent short-crested waves are solutions and then the first-
order perturbation equations representing the stability problem. Both systems of
equations will be solved in the frame of reference moving with the wave.

The zeroth-order system of equations is as follows:

�φ̄ = 0 for −d < z < η̄, (2.7)

φ̄z = 0 on z = −d , (2.8)

η̄ + 1
2

(
φ̄2

x + φ̄2
y + φ̄2

z − c2
)

= 0 on z = η̄, (2.9)

φ̄x η̄x + φ̄y η̄y − φ̄z = 0 on z = η̄. (2.10)

The wave steepness is defined as

h =
η̄(0, 0) − η̄(π/α, 0)

2
, (2.11)

which is the half of the non-dimensional peak-to-trough height for non-resonant
waves. The numerical method to obtain short-crested wave solutions of permanent
form is described in Okamura (1996) and Ioualalen & Okamura (2002). We look for
the following form of the velocity potential:

φ̄ = −cx +

N∑

k=0

N∑

j=2−(k mod 2)

φj,k sin(jαx) cos(kβy)
cosh[κj,k(z + d)]

cosh(κj,kd)
, (2.12)

where κj,k = [(jα)2+(kβ)2]1/2 and N is the maximum order of expansion and is chosen
to be odd. All calculations are carried out by increasing N until convergence. Further
details about the computations of the short-crested waves can be found in Okamura
(1996).

Note that at the limit (θ → 0◦, α → 0), we obtain φj,k sin(jαx∗) = φj,k sin[jα(x −
ct)] = −φj,k sin(jωt), with c =ω/α. In that case, we look for solutions independently,



148 M. Okamura, M. Ioualalen and C. Kharif

without reference to angle θ to avoid any artificial computational overflow of the
term ω/α when α =0.

Then the first-order system of equations is

�φ′ = 0 for −d < z < η̄, (2.13)

φ′
z = 0 on z = −d , (2.14)

φ′
t = −φ̄xφ

′
x − φ̄yφ

′
y − φ̄zφ

′
z − η′(1 + φ̄xφ̄xz + φ̄yφ̄yz + φ̄zφ̄zz) on z = η̄, (2.15)

η′
t = η′(φ̄zz − η̄x φ̄xz − η̄y φ̄yz) − η̄xφ

′
x − φ̄xη

′
x − η̄yφ

′
y − φ̄yη

′
y + φ′

z on z = η̄, (2.16)

for which we look for non-trivial solutions of the following form:

η′ = e−iσ t

∞∑

J=−∞

∞∑

K=−∞
aJ,Kei(Jαx+Kβy) , (2.17)

φ′ = e−iσ t

∞∑

J=−∞

∞∑

K=−∞
bJ,Kei(Jαx+Kβy) cosh[κJ,K (z + d)]

cosh(κJ,Kd)
. (2.18)

The resolution of this eigenvalue problem consists of a stability analysis for which
we need to determine the set of eigenvalues σ and the coefficients aJ,K and bJ,K of
their associated eigenvectors. Since the system of equations (2.13)–(2.16) represents a
Hamiltonian structure, the eigenvalues σ appear in complex-conjugate pairs. Thus an
instability corresponds to Im(σ ) 	= 0. For wave steepness h = 0, the unperturbed wave
is given by η̄ =0 and φ̄ = −c0x with c0 = ω0/α = (tanh d)1/2/α. Then the eigenvalues
are

σ s
J,K = −Jαc0 + s[κJ,K tanh(κJ,Kd)]1/2, s = ±1, (2.19)

where the signature of the perturbation is defined as sign[sIm(−iσ )], e.g. MacKay &
Saffman (1986). The set of eigenvalues {σ s

J,K} is neutrally stable for h = 0. Instabilities
arise as the wave steepness h increases. We use here the approach of Ioualalen et al.
(1999), which takes advantage of the useful work of MacKay & Saffman (1986)
on Hamiltonian systems. We apply the necessary condition for instability in terms
of eigenvalue collisions of opposite signatures or at zero frequency: given a wave
steepness h, an instability can arise if two modes have the same frequency, that is,
σ s

J1,K1
= σ −s

J2,K2
. This condition takes the following form for s = 1 (s = −1 corresponds

to an opposite direction of propagation):
[
κJ1,K1

tanh
(
κJ1,K1

d
)]1/2

+
[
κJ2,K2

tanh
(
κJ2,K2

d
)]1/2

= (J1 − J2) tanh1/2 d. (2.20)

The numerical procedure to solve the eigenvalue problem is detailed in Ioualalen &
Okamura (2002).

3. Standing and short-crested waves: their characteristics and matching
The resonance condition (1.1) shows that standing waves in deep water do not

encounter harmonic resonances while standing waves on water of finite depth are
subject to them. We analyse in this section the fifth-order (3, 5) resonance which
occurs at depth dhr ≈ 0.624 because it is the strongest harmonic resonance. We will
consider the following two configurations.

In the first case, we will consider only the single (3, 5) harmonic resonance without
reference to any other resonance that may occur around the critical depth dhr ≈ 0.624.
It will be shown that single resonances may yield three distinct branch solutions within
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Order N φ1,1 = 0.06, d = 0.62 φ1,1 = 0.2, d = 0.58

branch (1)3,5

17 −1.865310696 × 10−5 −3.951763321 × 10−4

19 −1.865310696 × 10−5 −3.951769609 × 10−4

21 −1.865310696 × 10−5 −3.951769684 × 10−4

23 −3.951769603 × 10−4

25 −3.951769654 × 10−4

27 −3.951769654 × 10−4

branch (2)3,5

17 −5.746762898 × 10−3

19 −5.746764507 × 10−3 −1.472865889 × 10−2

21 −5.746772968 × 10−3 −1.468852549 × 10−2

23 −5.746765198 × 10−3 −1.469538390 × 10−2

25 −5.746765216 × 10−3 −1.468928159 × 10−2

27 −5.746765226 × 10−3 −1.468747941 × 10−2

29 −5.746765227 × 10−3 −1.468570117 × 10−2

31 −1.468223799 × 10−2

33 −1.468544388 × 10−2

35 −1.468572651 × 10−2

37 −1.468585037 × 10−2

branch (3)3,5

17 5.756929317 × 10−3

19 5.756929150 × 10−3 1.411678337 × 10−2

21 5.756931649 × 10−3 1.414900982 × 10−2

23 5.756929623 × 10−3 1.416705818 × 10−2

25 5.756929550 × 10−3 1.421423636 × 10−2

27 5.756929542 × 10−3 1.422469017 × 10−2

29 5.756929542 × 10−3 1.421178330 × 10−2

31 1.420996969 × 10−2

33 1.420585906 × 10−2

35 1.420308851 × 10−2

37 1.420163614 × 10−2

Table 1. Values of φ3,5 at angle θ = 0.001◦ for φ1,1 = 0.06, d =0.62 and φ1,1 = 0.2, d = 0.58, as
a function of the order N of truncation.

a certain range of the wave steepness. Since the d-nearest harmonic resonance occurs
at the 20th-order (for critical depth depth dhr ≈ 0.627), the solutions will be computed
at order N = 19 (the order immediately lower than the order of appearence), for which
they numerically converge.

In the second case, we will also consider the (6, 20) higher-order resonance that
is due to the nearest other critical depth dhr ≈ 0.627 (Ioualalen et al. 1996). That
particular case is a first step in the analysis of the behaviour of short-crested waves
in the presence of multiple harmonic resonances; the solutions may have at most
3M branches, where M is the number of harmonic resonances. The solutions will be
computed for N > 20.

In order to illustrate the effects of high-order resonances, we provide in table 1 an
example of the convergence of φ3,5 for two configurations. For weak φ1,1 (φ1,1 = 0.06,
d = 0.62), the branch solution (1)3,5 has converged at order N = 17 (N < 20). The
convergence of the two other branches is particular: we first observe a reasonable
convergence from N =17 to N =19, then it deteriorates from N =19 to N =21
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Figure 1. Coefficient φ3,5 versus coefficient φ1,1 for depth d = 0.58 and (a) θ = 0◦ and (b)
θ = 5◦. The different branches of the solutions are numbered (1)–(3) and (TP) is used for
a turning point. Circles denote the unstable solutions while plus-signs correspond to stable
solutions (displayed only for θ = 0◦).

(occurrence of the (6, 20) harmonic resonance), and finally it improves with N

increasing. We attribute this deterioration to the active effects of the appearance
of (6, 20) resonant modes that are non-resonant for N < 20. The other reason is that
since each φ3,5 branch is subject to variations when a jump of the φ6,20 solution occurs
from one branch to another, the convergenve can be slower. In fact this aspect is not
linked to the numerical convergence of the solutions but rather to their identification
when branches of (6, 20) are very close. This point will be discussed later. For larger
φ1,1 (φ1,1 = 0.2, d = 0.58), we do not observe this convergence behaviour because
the dominant feature is the difficulty in obtaining convergence and the necessity to
increase N substantially in order to validate the solutions.

3.1. Introduction: the single resonance case

Figure 1 exhibits the multiple solution structure of the coefficient φ3,5 as a function
of the coefficient φ1,1 of the fundamental mode for depth d =0.58 and angles θ = 0◦

(‘pure’ standing wave) and θ = 5◦ (short-crested wave near the standing wave limit).
A high-density computation has been performed in the vicinity of the turning points,
φ1,1 ≈ 0.2305605 and φ1,1 ≈ 0.226085, for which bifurcations of the waves occur. The
solutions are composed of three branches: branches (1) and (2) which are connected
through a turning point (TP) and the single branch (3). For both angles the shape of
the solution exhibits the same characteristics and their amplitudes are fairly similar.
Note that the solutions on the left-hand side of the (φ1,1, φ3,5)-plane are not shown
because they are symmetrical about the origin.

Figure 1 also indicates that the resonant harmonic mode φ3,5 can be significant
both on branch (2) and on branch (3) for φ1,1 smaller than the turning point (TP)
while it is not significant on branch (1) and branch (3) beyond the (TP), dominated
by mode φ1,1. We call them a resonant wave and a non-resonant wave respectively.
Consequently, for resonant waves near φ1,1 = 0, it is most interesting to note that
the coefficient φ3,5 dominates the harmonic structure. This can be interpreted as
follows: in the presence of a resonant interaction, the wave is likely to undergo a
superharmonic transition. Note also that the stable branches (branch (1) and part of
branch (3) close to the φ1,1-axis) correspond to the waves that are most likely to be
observed.
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Figure 2. Coefficient φ3,5 versus (a) wave steepness h for d = 0.58 and θ = 0◦, and
(b) angle θ for d = 0.58 and φ1,1 = 0.2.

Figure 2(a) shows the multiple solution structure of the coefficient φ3,5 as a function
of the wave steepness h instead of the fundamental mode φ1,1 (figure 1) for depth
d = 0.58 and angle θ = 0◦. Note that solutions on the lower half of the (h, φ3,5)-plane
are not shown because they are symmetrical about the h-axis. The turning point in
the (h, φ3,5)-plane appears at h ≈ 0.1914786 corresponding to φ1,1 ≈ 0.22774. That
means that the place where the turning point appears in the (h, φ3,5)-plane is different
from that in the (φ1,1, φ3,5)-plane.

In figure 2(b) we show a bifurcation diagram of the solutions as a function of angle
θ for depth d =0.58 and coefficient φ1,1 = 0.2. Such harmonic resonances, exhibiting a
multiple solution structure, are specific to standing waves on water of finite depth and
contaminate the short-crested wave field up to angle θcr ≈ 14.5◦. At a greater angle,
i.e. a more three-dimensional wave, the short-crested wave has a unique solution. Note
that this critical angle applies for these particular parameters (d, φ1,1) = (0.58, 0.2).
More generally (not shown here), the critical angle θcr is a function of parameters d

and φ1,1.
Another main feature of figure 2(b) is the continuous matching between ‘pure’

two-dimensional standing waves and three-dimensional short-crested wave solutions.
This is an important aspect of the study since we are now able to apply the stability
analysis/results of short-crested wave solutions for θ → 0◦ (but non-zero) to ‘pure’
two-dimensional standing waves. θ = 0.001◦ will be taken in the following.

3.2. The multiple resonance case

In this case we took depth d = 0.62 in order to compute more easily the solutions
and have access to most of the solution branches. At that depth, the wave is subject
to (3, 5) and (6, 20) resonances appearing at orders 5 and 20 respectively. We have
computed solutions past the order of truncation 20 in order to obtain the two
resonances. In figure 3 we report some of the branches of solutions φ3,5 and φ6,20. Our
aim here is to exhibit the cross-effects of φ3,5 and φ6,20 branch solutions. Figure 3(a)
shows the two possible solutions of branch (3)3,5 when a jump from branch (1)6,20 to
branch (2)6,20 occurs. The difference between the two solutions is not observable on
the plot. At φ1,1 = 0.1084756 and φ1,1 = 0.1085133, the relative gaps between the two
possible converged solutions of (3)3,5 are 3×10−3 and 1.5×10−4 respectively. The gap
is relatively weak but still the two distinct solutions (a1) and (a2) are observable in
our computations. Figure 3(b) shows the two possible solutions of branch (2)3,5 when



152 M. Okamura, M. Ioualalen and C. Kharif

φ
3,5

φ
6,20

0.00010

0.00008

0.00006

0.00004

0.00002

0

–0.00002

–0.00004
0.10842 0.10846 0.10850 0.10854

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.080

0.004

0.002

0

–0.002

–0.004

–0.006

–0.008

–0.010

–0.012

φ
1,1

(a)

(b)

φ
3,5

φ
6,20

(a2)

(a1) (3)
3.5

(3)
6,20

(1)
6,20

(2)
6,20

(2)
3,5

(3)
6,20

(1)
6,20

;
 
(1)

3,5

(2)
6,20

(b2)
(b3)

(TP)
3,5

(TP)
6,20

Figure 3. Coefficients φ3,5 and φ6,20 versus φ1,1 for d = 0.62 and θ = 0.001◦. (a) A portion of the
plane where we observe the three branches and the turning point of resonance coefficient φ6,20,
i.e. (1)6,20, (2)6,20, (3)6,20 and (T P )6,20 (circles), and branches (3) of coeffcient φ3,5 (plus-signs),
i.e. (3)3,5, that are computed for the distinct (1)6,20, (2)6,20 [(a1) and (a2) respectively]. Note that
the two (3)3,5 branches are hardly differentiable in the plot. (b) A portion of the parameter
regime where we found successive couples of branch (2)3,5 [(b2) and (b3)] when a jump of the
solution φ6,20 occurs from branch (2)6,20 to branch (3)6,20 respectively.

a jump from branch (2)6,20 to branch (3)6,20 occurs. In that case the two solutions
(b2) and (b3) appear clearly on the figure. At φ1,1 = 0.01060 and φ1,1 = 0.07015, the
relative gaps between the two solutions are 3 × 10−5 and 5 × 10−4. Here again the
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converged solutions are computable. In both cases the gap between the two solutions
is more important around the φ6,20 turning point but on the whole it is relatively
weak.

4. Superharmonic instability of short-crested waves near their standing
wave limit: θ =0.001◦

We calculate here the superharmonic instabilities of short-crested waves that are
very close to standing waves; that is, θ = 0.001◦. Since Ioualalen & Okamura (2002)
clarified the relation between a superharmonic instability and a harmonic resonance
for short-crested waves, we wish here to characterize the superharmonic instabilities
associated with harmonic resonances of standing waves. The time scale of the strongest
instability will tell us whether the multiple solution related to harmonic resonance is
observable. For this stability analysis we have chosen φ3,5 branch solutions for the
single resonance case. We made this choice because (i) the stability results will be
more general, (ii) the relative gap between two solutions of one φ3,5 branch solution
relative to two distinct φ3,5 branches is weak thus (iii) the derived stability results will
be representative.

Following Ioualalen et al. (1996), a superharmonic instability associated with a
harmonic resonance (m, n) can arise only if the two eigenvalues σ s

m,n(h) and σ −s
−m,n(h)

merge at zero. For standing waves the condition of harmonic resonance is equivalent
to the relation (1.1). The coalescence of the two eigenmodes (±m, n) is then interpreted
as Ioualalen et al. (1999)’s class Ia(m, n) instability. Such superharmonic instability is
described as an interaction between the two eigenmodes (±m, n) and the 2m-modes
(1, ±1) of the basic unperturbed standing wave; that is,

Ω1 = −Ω2 + mΩ01 + mΩ02, (4.1)

k1 = k2 + mk01 + mk02, (4.2)

where Ωi = [|ki | tanh(κm,nd)]1/2, Ω0i = tanh1/2 d for i = 1, 2 and k1 = (αm, βn), k2 =
(−αm, βn), k01 = (α, β), and k02 = (α, −β).

In figures 4 and 5 the frequencies and growth rates of the eigenvalues σ±3,5 are
plotted for all branches of the wave solutions for depths d =0.58 and d = 0.62 in the
vicinity of the critical depth dhr ≈ 0.624. For both depths, branch (1) is always stable,
i.e. from φ1,1 = 0 to the turning point (φ1,1 ≈ 0.2305605 for d = 0.58 and φ1,1 ≈ 0.0705
for d =0.62). By contrast, branch (2) is always unstable. The transition from stability
to instability occurs when the frequency reaches the zero-axis: then the growth rate
value leaves the axis. For both depths, the dominant instability appears when φ3,5 is
dominant while φ1,1 is negligible. Instability of branch (2) weakens with decreasing
φ3,5 then cancels at the turning point (at the zero-axis here). A similar behaviour is
observed for branch (3) except that instability disappears beyond the turning point
(φ1,1 ≈ 0.2591 for d =0.58 and φ1,1 ≈ 0.0709 for d =0.62). The maximum instability
also appears for φ1,1 negligible. The instability occurs when eigenvalues σ3,5 and
σ−3,5 coalesce at zero frequency (phase-locked with the unperturbed wave). Such
instability is physically associated with a resonant interaction: the coalescence of the
two eigenmodes at zero frequency simply means that the harmonics (±3, 5) propagate
at the same phase speed as the basic wave, bearing in mind that the stability problem
has been computed in the frame of reference moving with the basic wave.

So far, this behaviour has not been identified. Previous studies showed that for
short-crested wave instabilities associated with harmonic resonance, the frequencies
reach the zero-axis, remain on that axis within a φ1,1-range and then leave it, yielding
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a ‘bubble’ structure of the instability. This has been shown in particular by Ioualalen
& Okamura (2002) for the harmonic resonance (2, 6) which is characteristic of three-
dimensional short-crested waves. In the present case, i.e. for standing waves, the region
of instability is located in a wide range of φ1,1, which is quite different. The instability
is strong for resonant waves, i.e. on branch (2) and the left-hand part of branch (3)
where coefficient φ3,5 is dominant. The instability weakens as φ1,1 increases. Beyond
the turning point, branch (3) remains weakly unstable within a certain range of the
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parameter regime and then it turns stable. Figure 6 indicates the frequencies and
growth rates of the eigenvalues σ±3,5 for depth d = 0.58 and θ = 5◦ which is not at
the standing wave limit. The results in figure 6 are similar to those in figure 4. The
diagrams of this instability are thus characteristic of harmonic resonances due to the
standing wave limit of short-crested waves even when the wave is three-dimensional.

To conclude: since we have shown that the solutions of short-crested waves match
those of ‘pure’ standing waves at their limit θ → 0◦, we may apply the above results
to two-dimensional standing waves.

5. Conclusion
This study deals with the ability of two-dimensional free-surface standing waves to

admit multiple solutions and with the associated existence of harmonic resonances
yielding superharmonic instabilities. These resonances are a particular feature of
two-dimensional standing waves exhibiting a multiple solution structure. This non-
uniqueness is analysed through numerical computation of the waves; we then studied
their stability near the region of the parameter regime where the strongest harmonic
resonance (3,5) occurs. Since our numerical procedure to compute the stability of
three-dimensional short-crested waves does not apply to two-dimensional standing
waves (because the waves are no longer stationary), we had first to show that short-
crested waves and standing waves match each other at the limit θ → 0◦ in order to
extend the stability results to standing waves. Then we performed a superharmonic
stability analysis of short-crested waves very near their standing wave limit in order
to apply the results derived to ‘pure’ standing waves. The stability analysis shows
that resonant waves are strongly unstable. They are likely to jump from one solution
to another, e.g. from branch (2) to (3), and their instability is likely to enhance the
amplitude of the jump since the gap between the dominant superharmonic modes
(3,5) of the two branches of opposite sign may increase with time. By contrast, non-
resonant waves are weakly unstable within a sporadic range of the parameter regime
and then turn stable. Therefore they are the only solutions to persist.
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